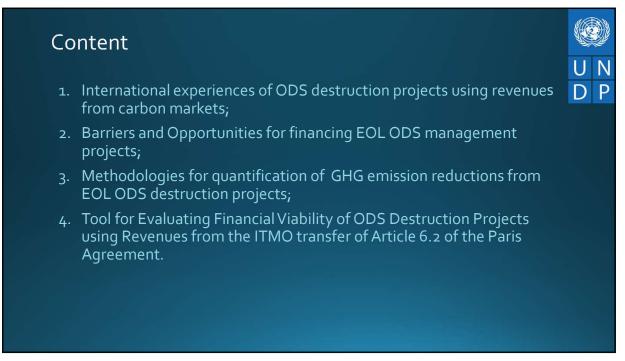


ADRIAN BUKMANIS - VICE-CHAIR 2023-2025 CEO and founder of Veridien (Singapore, France) Veridien provides advisory, training and technology for life-cycle refrigerant management. They offer services for building accurate data inventories, leak rate and emissions calculations plus leak mitigation technologies. Focus on using natural refrigerants Regular thoughts on the refrigerant and f-gas topic also at: https://fluoridated.substack.com/ Top 3 priorities for the TWG FM work: 1. Ensuring that we don't re-invent the wheel. 2. Also work with sectors that are dealing with (non-climate) waste streams or biodiversity VERIDIEI related issues 3. Close Data Gap by improving transparency, verify impact and solve MRV problems with careful use of technology. 14 04 2023 Meeting 7



Experience, methodologies and tool to estimate the viability of carbon markets for financing EOL management of refrigerants

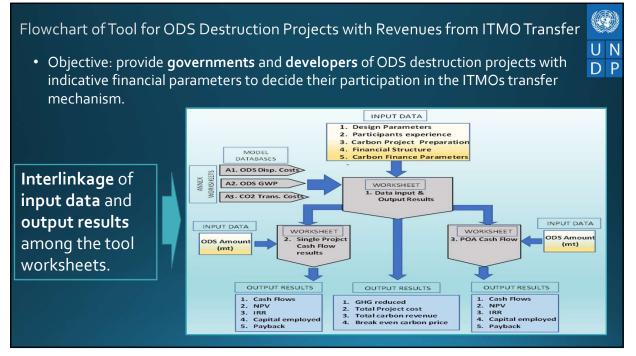
2nd Meeting of the COPA Thematic Working Group on Financing Mechanism (TWG FM)

> Juan Mata Consultant March 30, 2023

	Country	Status	Voluntary Registry	First year of project	Credits Issued (tCO _{2eg}) to date	D Credits Retired
Until November	India	Completed	CAR	2009	683,087	683,087
2022, approximately 30 million ODS	India	Completed	CAR	2010	551,802	517,957
credits have been	Mexico	Completed	CAR	2010	2,602,812	2,597,770
issued. From them	Mexico	Completed	CAR	2012	89,834	9
nearly 4.2 million credits belong to	Nepal	Completed	CAR	2013	82,391	31,500
projects in A5	Ghana	Registered	VCS	2018	155,431	145,023
countries, the rest to non-A5, mainly	Dominican Republic	Registered	VCS	2021	23,657	3,000
U.S.A. and Canada.	Saudi Arabia	Listed	ACR		0	(
	South Africa	Under development	VCS		0	(
	Total				4,189,014	3,978,34

	International experiences of ODS destruction projects using revenues from carbon markets (2/2)	U N D P
	 Although not mandated by the MP or the KP, ODS need to be recovered and properly treate to avoid their release into the atmosphere over time due to leakage or intentional venting; Not being a common practice in A5 countries, ODS management and destruction have become a technical and financial challenge for governments; 	d
3	. So far, A5 countries participation in carbon markets has been limited to the selling of ODS banks to project developers for destruction mainly in U.S. facilities;	

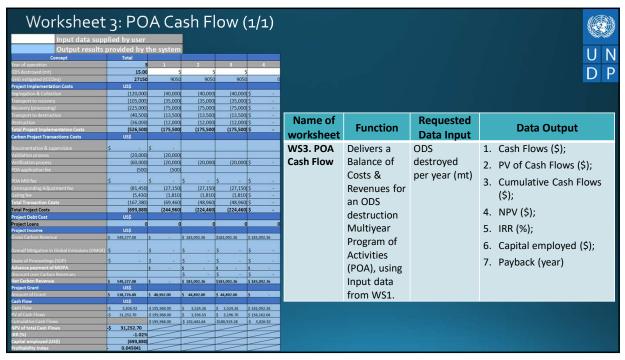
- 4. This activity has generated carbon credits used by U.S. firms mainly for voluntary carbon offsetting purposes;
- 5. However, ODS destruction projects implementation poses financial & technical challenges and risks when a country's government is directly handling it, as it is the case of A5 countries interested in evaluating possible engagement in Art. 6.2 mechanism;
- 6. Therefore, a new approach (different from selling ODS banks to project developers) need to be designed.


Methodology Aspect	ACR ODS from International Sources v1.0	VM0016 Recovery & Destruction of ODS v1.1	CAR Art.5 ODS Project Protocol v2.0
	Ар	plicability	
ODS	MP Group1 Annex A	MP Group1 Annexes A, B & C	MP Group1 Annex A
Use	Refrigerant	Refrigerant and Blowing Agent	Refrigerant
Source	- Bulk/Stockpiled (used &virgin)	- Bulk/Stockpiled (only CFCs)	- Bulk/Stockpiled (not virgin)
	- Recovered from equipment	- Recovered from equipment/foam	- Recovered from equipment
Location/Party	ODS source: outside U.S.A.	ODS source: All countries	ODS source: Art. 5 countries
	ODS destruction: U.S.A. or outside	ODS destruction: All countries	ODS destruction: U.S.A.
	Eligibility and Additional	lity Criteria at Project's Country	
CFCs are phased out	Yes	Yes	Yes
ODS destruction not req.	Yes	Yes	Yes
Must comply with local regulations.	Yes	Yes	Yes
Additionality Test	- Legal Requirement Test	- Regulatory surplus & positive list	- Legal Requirement Test
	- Performance Std Evaluation	in VMD0048;	- Performance Std Test
		- CDM additionality demo tool.	7540.41
Destruction Facility	[–] TEAP stds.	- TEAP stds.	- TEAP stds.
	⁻ DRE = 99.99%	- DRE (for BA) = 85%	- DRE (conc. ODS) = 99.99%
		- DRE (conc. ODS) = 99.99%	- DRE (dilute ODS) = 95%
		- DRE (dilute ODS) - 95%	

Methodology Aspect	ACR ODS from International Sources v1.0	VM0016 Recovery & Destruction of ODS v1.1	CAR Art.5 ODS Project Protocol v2.0
Baseline Emi	ssions and Quantification o	fGHG	
ODS released at end-of-life (equipment)	Yes	Yes	Yes
ODS from leaks/servicing (equipment)	No	No	Yes
ODS released at storage (bulk/stockpiled)	Yes	Yes	Yes
Specific emissions from energy consumption at recovery (fuel/ electricity/ODS oxidation) & from transport	No	Yes	No
Aggregated emissions from ODS transport & destruction	Yes	Yes	Yes
Emissions from use of ODS substitutes (leakage)	Yes	Yes	Yes
Мо	nitoring and Verification		
Specifies types of measured/recorded data	Yes	Yes	Yes
Specifies monitoring/testing methodologies	Yes	Yes	Yes
Specifies monitoring times/periods	Yes	Yes	Yes
Specifies roles/responsibilities for monitoring/data collection/storage	Yes	Yes	Yes
Specifies doc. required for validation & verification	Yes	Yes	Yes

Methodologies for quantification & MRV of GHG emission reductions from ODS destruction projects (3/3)

- 1. VCS standard applies to all MP Group 1 ODS from Annexes A, B & C, CAR and ACR methodologies are limited to CFCs from Group 1 Annex A;
- VCS standard applies to ODS used as refrigerants and blowing agents, CAR and ACR methodologies are specific for refrigerants;
- 3. The three methodologies admit ODS originated in A5 countries;
- CAR methodology limits ODS destruction to the U.S., VCS and ACR admit destruction in any country that complies with technical specifications;
- VCS methodology quantifies specific GHG emissions from ODS transportation from recovery/storage to destruction, CAR and ACR methodologies calculate them aggregated with ODS destruction emissions;
- VCS methodology is the only one that quantify disaggregated GHG emissions from energy consumption at recovery facility (fuel, electricity, ODS oxidation), CAR and ACR methodologies quantify them aggregated to the ODS transportation/destruction emissions.
- 7. CAR methodology is the only that considers ODS from leaks/servicing (during operation of equipment), for the definition of baseline.

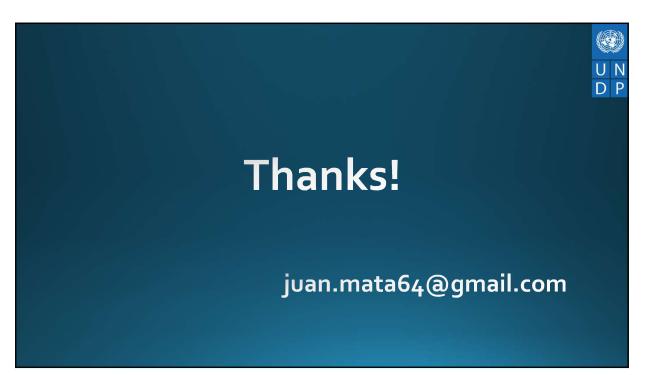

UN

DP

Worksheet Name	Fu	nction	Requested Data Input							
WS1. Data Input & Output Results	estimation of project costs, and financial i 2. Centralizes ou	tput results: project revenues, "break	 Partici Definiti docum Carbo start y 	pants experience ion of ITMO pro nentation, valida n revenue param ear, SoP, OMG, e	DS type, amount, use, sector, etc e in ODS destruction project sta ject preparation activities: tion, verification, registry, fees, neters: carbon price, carbon rev ttc.; uity, debt, grant, cost of capital,	ges; etc.; enue) P			
In	out Data	to a data and the			,, 8, eeer er erpres,					
Project Design Parameters ODS Sector/activity	HCFC-22 Domestic refrigeration (R or BA)	Input data supplie Input data selecte Output data provi	d by user from	a predetermined list em						
Use of ODS	Refrigerant (R)	Project participants experien	ce		Financial Structure					
Effort Level Required	Low	Segregation/Collection		Mid	Equity (%)		80%			
Population Density Amount of pure ODS destroyed (m)	t) Dense	Recovery		Mid	Debt (%) Grants (%)		20%			
		Transport		Mid			0%			
Destruction Technology	HTI			High			0/0			
Destruction's Site Location Blend ODS 1	International	Destruction			Loan duration (vear)					
GWP ODS 1	0	Carbon Project Preparation								
		Documentation & supervisio	n	N/A						
Amount of ODS 1 destroyed (mt)				Yes	Cost of capital (%)		5%			
Amount of ODS 1 destroyed (mt) Blend ODS 2		Validation process								
Amount of ODS 1 destroyed (mt)		Validation process Verification process		Yes	Annual inflation rate cost (%)					
Amount of ODS 1 destroyed (mt) Blend ODS 2			AP)							
Amount of ODS 1 destroyed (mt) Blend ODS 2 GWP ODS 2 Amount of ODS 2 destroyed (mt) Blend ODS 3		Verification process	AP)		Annual inflation rate cost (%) Carbon finance parameters					
Amount of ODS 1 destroyed (mt) Blend ODS 2 GWP ODS 2 Amount of ODS 2 destroyed (mt) Blend ODS 3 GWP ODS 3		Verification process Mitigation Action Project (M application fee		Yes	Annual inflation rate cost (%) Carbon finance parameters Start of Carbon credits revenue (year)		20.2			
Amount of ODS 1 destroyed (mt) Blend ODS 2 GWP ODS 2 Amount of ODS 2 destroyed (mt) Blend ODS 3 GWP ODS 3 Amount of ODS 3 destroyed (mt)		Verification process Mitigation Action Project (M application fee Mitigation Action Identificati	on (MID) fee	Yes Yes	Annual inflation rate cost (%) Carbon finance parameters Start of Carbon credits revenue (year) Carbon credit price (US\$/tCO2eq)		20.23			
Amount of ODS 1 destroyed (mt) Blend ODS 2 GWP ODS 2 Amount of ODS 2 destroyed (mt) Blend ODS 3 GWP ODS 3		Verification process Mitigation Action Project (M application fee	on (MID) fee	Yes Yes	Annual inflation rate cost (%) Carbon finance parameters Start of Carbon credits revenue (year) Carbon credit price (USS/tCO2eq) Carbon price index (%)		20.23			

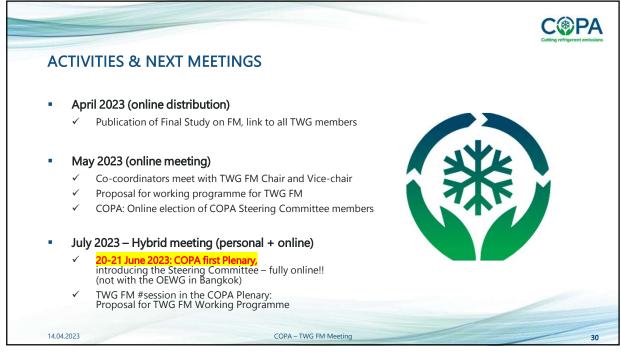
Workshe	et 1: Data Input a	nd Output	Results (2/2)								
Worksheet Name	Function		Data Output								
WS1. Data Input & Output Results	 Centralizes input param estimation of: ODS dest costs, carbon revenues, indicators. Centralizes output resul carbon revenues, "brea cost", etc 	ruction project and financial lts: project costs,	 Project Performance (1 Project implementatio ITMO Project Transact (or per ITMO); Carbon revenue perfor even cost (\$/tCO2eq), 	n costs per stage ion Costs (Total ar	and total; nd per tCO2e						
Output data pro	vlied by user cted by user from a predetermined list ovided by the system provided by the system	Project Impleme Segregation & Co Transport to reco		US\$/mt (Model) \$ 8,000.00 \$ \$ 7,000.00 \$	US\$ (Model) 160,000.00 140,000.00	US\$ (Project Developer)					
Project Performance ODS destroyed (mt)	Output Results	20.00 Recovery (proces Transport to des Destruction Total Project Cos	ssing) truction	\$ 15,000.00 \$ \$ 2,700.00 \$ \$ 2,400.00 \$ \$ 35,100.00 \$	300,000.00 54,000.00 48,000.00 702,000.00						
Expenditure per ODS destr Expenditure per GHG redu (US\$/tCO2eq) Break even cost Total	after OMGE & SOP (tCO2eq) oyed (US\$/mtODS) \$ 42,9 ced before OMGE & SOP Project Cost Total Carbon	1810 Carbon Project T 36200 Documentation 36200 Validation proce verification proce Verification Action Xitigation Action Mitigation Action Corresponding A Corresponding A	ransactions Costs Budget & supervision ss ess n Project (MAP) application fee n Identification (MID) fee djustment fee (US\$/tCO2eq)	US\$/tCOeq (Model) S - S S 0.55 \$ S 0.55 \$ S 0.15 \$ S 0.15 \$ S - S S - S S 3.00 \$	US\$ (Model) - 20,000.00 20,000.00 500.00 - 108,600.00	US\$ (Project Developer)					
(US\$/tCO2eq) \$ 23.71 \$	(US\$) revenue (US\$) 858,340.00 \$ 732,369.44	Listing fee (US\$/ Total Transaction		\$ 0.20 \$ \$ 4.32 \$	7,240.00 156,340.00	-					

Input data s	upplied by user						
Output resu	Its provided by th	ne system					
Concept	Total						<u> </u>
Years of operation		1 1	2				
ODS destroyed (mt)	1		.5				
GHG mitigated (tCO2eq)	2715	0 2715	0 0				
Project Implementation Costs	US\$	(420.00)					
Segregation & Collection	(120,000						
Transport to recovery Recovery (processing)	(105,000						
Recovery (processing) Transport to destruction	(40,500						
Destruction	(40,500						
Total Project Implementation Costs	(526,500			blanna af		Description	
Carbon Project Transactions Costs	USŚ	1020,000		Name of	E	Requested	
Documentation & supervision	S ·	S -			Function	Data Innut	Data Output
Validation process	(20,000		2)	worksheet		Data Input	
Verification process	(20,000			WS2. Single	Delivers a	Total ODS	1. Cash Flows (\$);
MAP application fee	(500) (500	D)		Delivers a		1. Cash Flows (3) ,
Corresponding Adjustment fee	(81,450) (81,450	0)\$ -	Project Cash	Balance of	destroyed	2. PV of Cash Flow
Listing fee	(5,430			-			2. PV of Cash Flow
Total Transaction Costs	(127,380			Flow	Costs &	(mt)	(\$);
Total Project Costs	(653,880) (653,880	0)\$ -		D		(7),
Project Debt Cost	US\$		-		Revenues for a		3. Cumulative Cash
Project Loan	(0 0		1 Year ODS		5. Cumulative Casi
Loan Payment	\$ -	\$ -	\$ -		I leal ODS		Flows (\$);
Project Income from Carbon Revenues	US\$				destruction		110 103 (9),
Gross Carbon Revenue	\$ 549,277.08	\$ -	\$ 549,277.08				4. NPV (\$);
Overall Mitigation in Global Emissions (OMGE)	s -	s -	s -		project, using		4. ΝΕV (<i>γ</i>),
Share of Proceedings (SOP)	s -	\$ -	s -		Input data fram		
Advance payment of MOPA		\$ -			Input data from		5. IRR (%);
Discount over Carbon Revenues		-	\$ -		WS1.		
Net Carbon Revenue	\$ 549,277.08	\$ -	\$ 549,277.08		VVJ1.		Capital employe
Project Grant	US\$						(¢).
Amount of Grant	\$ 130,776.00	\$ 130,776.00	\$ -				(\$);
Cash Flows	US\$						7 7 1 1 ()
Cash Flows	\$ 26,173.08	\$ 523,104.00	\$ 549,277.08				Payback (year)
PV of Cash Flows	\$ 17.03	\$ 523,104.00	\$ 523,121.03				
Cumulative Cash Flows	14	-\$ 523,104.00	\$ 26,173.08				
NPV of total Cash Flows	\$ 17.03	///////////////////////////////////////	XIIIIII				
IRR (%) Capital employed (US\$)	5.00%		X/////////////////////////////////////				



		of workshee	et		Function Requested Data Output Data Input								•)			
. ODS	Dis	posal Costs		im fo	•		itior ject	ion costs ect stages.			ion costs ect stages. 2, 2009			N/A Min/Max costs for ODS segregation, collection processing, transportation & destruction, for ODS types, application sectors, domain, and country experience.							on, for	
	ffort quired	Sector	Population Density	ODS Type	Segregat ection	Costs	reco	port to overy osts	Processi		Transpor (In cou Destrue	untry tion)	Transpor (Interna Destruc	tional tion)	Destructi (In co Destru	untry ction)		ction) n except	(Interna Destruc (Plasma	ction) a Arc)		
-	_			-	US\$/m min	max	US\$/	mtODS max	US\$/r min	mtODS max	US\$/m	tODS max**	US\$/m	tODS max**	US\$/m min	max	US\$/n min	max	US\$/m	tODS max		
		Domestic refrigeration	D	D	6000	10000			10000	20000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Domestic refrigeration	D	BA	6000	10000			20000	30000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Commercial refrigeration	D	R	8000	12000			8000	15000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Commercial refrigeration	D	BA	8000	12000			25000	35000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Transport refrigeration	D/S	R	N/A	N/A			15000	20000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Industrial refrigeration	D/S	R	N/A	N/A	N/A	N/A	4000	6000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Stationary A/C ^	D	R	1000	2000			4000	25000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Mobile A/C	D	R	1000	2000	N/A	N/A	4000	6000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Domestic refrigeration	5	R	10000	15000	30000	40000	10000	20000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Domestic refrigeration	S	BA	10000	15000	30000	40000	20000	30000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Commercial refrigeration	S	R	15000	20000	40000	50000	8000	15000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Commercial refrigeration	S	BA	15000	20000	40000	50000	25000	35000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
	High	Stationary A/C ^	S	R	1000	2000	N/A	N/A	10000	35000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Mobile A/C	S	R	1000	2000	N/A	N/A	4000	6000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
	[Steel forced panels	D	BA	75000	90000	5000	10000	30000	40000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
	[Block-pipe	D	BA	10000	15000	15000	20000	30000	40000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		
		Block-Slab	D	BA		100000	5000	10000	30000	40000	250	1000	1400	4000	4000	7000	2400	6000	7400	18500		

Substances controlled by the Montreal Protocol	Formula	GWP (100 years)				
CFC-11	CCl₃F	4,750				
CFC-12	CCl ₂ F ₂	10,900				
CFC-13	CCIF ₃	14,400				
CFC-113	CCl ₂ FCClF ₂	6,130				
CFC-114	CCIF ₂ CCIF ₂	10,000				
CFC-115	CCIF ₂ CF ₃	7,370	Name of		Requested	
Halon-1301	CBrF ₃	7,140	worksheet	Function	Data Input	Data Outpu
Halon-1211	CBrClF ₂	1,890			-	
Halon-2402	CBrF ₂ CBrF ₂	1,640	A2. ODS	Database of	N/A	GWP of 19 ODS
Carbon tetrachloride	CCl ₄	1,400	GWP	GWP of ODS		controlled by th
Methyl bromide	CH₃Br	5		controlled by		MP.
Methyl chloroform	CH3CCl3	146		the MP.		
HCFC-21	CHCl₂F	148				
R-22 (HCFC-22)	CHCIF ₂	1,810				
HCFC-123	CHCl ₂ CF ₃	77				
HCFC-124	CHCIFCF ₃	609				
HCFC-141b	CH ₃ CCl ₂ F	725				
HCFC-142b	CH ₃ CCIF ₂	2,310				
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	122				


Concept	Costs (l					
	min		Concept Description			
oject preparation	0	60000	This is typically the cost of consultant support to undertake an initial feasibility assessment, develop project documents, and support the validation and registration processes. This cost may be considerably lower than estimated if local consultants (in-country) are used or particularly, if expertise exists in-house to undertake these tasks. In the case of the Swiss government, Kilk foundation upfronts up to 200,000 USD for MADD development. This one-off fee is largely a fixed cost, but might be slightly reduced for particularly simple or small projects. Note that this fee is not	Name of worksheet	Function	Data Output
d party validation 🔅	15000		Inits oftee off thesis angley a taxed cost, our might be signify reduced to prancularly simple or small projects. Note that this tee is not required for CCX or CAR. Recent references from UNDP point to an avergae cost of validation of US\$15,000-US\$20,000, for ITMO projects.	A3. CO2 Project	Database of transaction	Average transaction costs incurred in an
d party verification \$\$/year)	15000		Life the cost of validation, this cost is fixed but might be slightly lower for particularly simple or small projects. For projects carried out on an ongoing or multi-year basis, this would be an annual cost. Recent references from UNDP point to an avergae cost of verification of US\$15,000-US\$20,000, for ITMO projects.	Transaction Costs	costs of a mitigation	ITMO project development:
itigation activity rticipant (MAP) or			This fee is paid by an activity developer who has to create a Mitigation Action Project (MAP) account on the Ghana Carbon Registry (GCR) to obtain a Mitigation Identification Number (MID) for the first mitigation activity aiming to generate authorised ITMOs for transfer either on the GCR or registry linked to a preapproved International Credit Standard (ICS) in this framework. Fee is paid also by voluntary carbon project developer seeking formal recognition to create an account on the GCR and list carbon offset credit for recording on the GCR. The Account of the GCR offset credit for the GCR and the credit standard (ICS) in this framework. Fee is paid also by voluntary carbon project developer seeking formal recognition to create an account on the GCR and list carbon Offset credit for recording on the GCR. The seeking formation of the GCR. The seeking formation of the GCR and the section of the section of the section of the section of the GCR. The section of the section of the section of the section of the GCR and the section of the		action seeking the transfer of ITMOs under Article 6.2.	 Preparation; Validation; Verification;
tity application fee itigation activity entification (MID) fee	500 250		value ranges from US\$5500.00 for small scale projects or forestry projects to US\$1000.00 for large scale commercial non forestry projects. Fee is paid by activity developer seeking to create MID for additional mitigation activity other than the first activity created into the same MAP account. The value range from US\$250.00 for small scale projects or forestry projects to US\$500.00 for large scale commercial non forestry projects.		Source: CAR, Gold Std, VCS, Ghana A6.2	4. Fees (Application, MID, CA, listing).
rresponding ljustment Fee S\$/ITMO)	2		Fees paid by an activity developer or participating acquiring Party to compensate for the opportunity cost for meeting Ghana NDC and the marginal cost for creating associated with the regular transfer and reporting of transferable mitigation outcomes. The value ranges from USS3.00 for small scale projects, USS8.00 or forestry projects, to USS10.00 for large scale commercial non forestry projects.		Guideline, Klik	

